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Given only the static boundary flux and potential, electrical impedance tomography solves 
the inverse problem for the conductivity distribution. A Gauss-Newton solution is presented 
to solve this nonlinear problem when the conductivity distribution is represented by a 
piecewise polynomial basis function. An efticient method is presented to solve for the Jacobian 
matrix. This efficiency is made possible because of the local support of the basis functions used 
to approximate the conductivity distribution and data collection using the four-electrode 
technique. A method is presented for the local support case to solve for the Jacobian con- 
stants, which are needed to assemble the Jacobian matrix. It is shown that when higher than 
piecewise constant conductivities are desired it is more efficient to model conductivity than 
resistivity. Results are presented showing simulated reconstructions using a piecewise constant 
conductivity representation, and a (bi)hnear conductivity representation with Co continuity 
across conductivity elements. These results show that although the Gauss-Newton method 
performs very well, further work needs to be done in designing meshes that increase the condi- 
tioning of the approximate Hessian matrix. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Electrical impedance tomography (EIT) reconstructs a conductivity distribution 
from static electrical measurements on the object’s periphery. In traditional com- 
puter tomography (CT) reconstruction, the probes are high-energy X rays with 
straight ray paths independent of the medium being probed. In contrast, the current 
paths and equipotential surfaces of EIT are functions of the unknown conductivity 
distribution. This unknown dependence leads to a nonlinear reconstruction 
problem in which questions of algorithmic convergence must be addressed. We 
propose a reconstruction algorithm based on an iterative linearization of the non- 
linear relationship between the conductivity distribution and the electrical 
measurements. 

The solution to the EIT problem has many applications. The biomedical com- 
munity could use EIT as an imaging tool probing with nonionizing radiation. The 
EIT instrument can be made cheaply, on the order of a few thousand dollars, and 
operated with no harm to the patient. Although EIT is not a high-resolution 
imaging system, the data acquisition can be very fast, on the order of a millisecond. 
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These facts suggest continuous bedside monitoring for such things as pulmonary 
edema, cerebral ventricular hemorrhage, and gastric emptying, to name a few. 

EIT also has several geophysical applications. The most well-posed problem is 
in core sample analysis. Here a cylindrical section of earth is placed in a pressure 
vessel. The effects of various pressure and temperature conditions on the core can 
be visualized by displaying the conductivity as an image. EIT applications that 
suffer from illposedness are: half-plane resistivity surveys and borehole logging (the 
understanding of what materials lie beyond a borehole). The rapid data collection 
also suggests the study of rock failure under high stress. 

In a practical application of EIT, we only have a finite amount of boundary 
information, which limits the degrees of freedom used to represent a conductivity 
distribution. With this limitation we wish to reconstruct a model as close to a 
realistic approximation as possible. A piecewise constant conductivity representa- 
tion is most common; however, it may not have enough variation. We can apply 
a smoothing filter to the distribution before display, but a more formal treatment 
would be to model the conductivity with a higher order basis during the reconstruc- 
tion. We discuss here how to reconstruct a conductivity model with a given order 
of basis functions. 

Section 2 discusses the mathematics that describe the electrical fields governing 
EIT, and the numerical method that we use to approximate the solution. Section 
3 shows the method we use to solve the inverse problem of EIT. Section 4 describes 
the numerical method we use to overcome the inherent illconditioning of the 
approximate Hessian matrix needed in the Gauss-Newton solution. Section 5 
shows that the stiffness matrix used by the finite element method can be thought of 
as an electrical-network admittance matrix. Section 6 derives the numerical techni- 
que to efficiently calculate the Jacobian matrix needed in the Gauss-Newton 
solution. Section 7 shows how to calculate the constants needed in the efficient 
Jacobian matrix calculation. Section 8 discusses our particular implementation 
details for the results that Section 9 shows. 

2. THE FORWARD PROBLEM 

The equations that govern our measurements are 

V.aVv=O, in Q; 

av 
fs -i&=y> on asz, 

where Q is the conductivity distribution, which is everywhere real and positive, v the 
potential distribution, n the outward normal, y the applied flux, Sz the domain of 
interest, and CX2 its boundary. For this paper we will be concerned with the two- 
dimensional problem, but the extensions to three dimensions are straightforward. 
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The solution to (1) is only known in closed form for relatively simple domains and 
conductivity distributions. When these simplifications are not valid, a numerical 
technique is used to approximate the solution. The finite-element method (FEM 
[ 1 ] is one such method. 

The FEM divides Q into a number of small elements and defines a basis function 
for v over these individual elements. The basis functions are typically Lagrange 
polynomials that have only local support. Since the operator L =V. aV is self- 
adjoint we can use these same basis functions as the weighting functions, i.e., we can 
approximate (1) by the Galerkin method [2]. Since the basis functions are locally 
defined, we can assemble the FEM solution element-by-element, giving 

Yv=c, (2) 

where Y is the global stiffness matrix, which is typically singular, v is a vector 
representing the potential distribution at the nodes of the elements, and c is the 
effective applied current at these nodes. 

Section 5 shows that (2) represents some electrical network, although the 
physical parameters may be unrealizable (ex., negative resistors). Since (1) is a 
Neuman problem, v is determined only up to an additive constant. We make Y 
nonsingular by supplying this constant through a voltage reference node, forming 
a node-admittance matrix [3]. To supply a voltage reference node, let s be some 
node, then, set the sth row and column of Y equal to zero and the main-diagonal 
element to one. This new matrix is the constrained form of Y. Now set the sth entry 
of c to zero, grounding node s [4]. Then solve for ii. 

3. THE RECONSTRUCTION ALGORITHM 

The FEM gives us a way of approximating the potential everywhere given the 
conductivity distribution and the appropriate boundary conditions. EIT wishes to 
solve the inverse problem; given the boundary conditions and the potential on the 
boundary, solve for the conductivity distribution. The difficulty in EIT is that the 
boundary potentials depend on any point in the conductivity distribution in a 
nonlinear way. 

To solve this problem define: 

1. v,, E R", the n voltages we observe on the boundary. 
2. g c DE R", a conductivity distribution with m degrees of freedom. 
3. f: DcRm -, R", a function mapping a conductivity distribution with m 

degrees of freedom into a set of n approximate voltage observations. 
4. 4 = $(f - vO)= (f - v,), the squared error of the reconstruction. 

Our problem in impedance imaging is finding a point g* that is at least a local 
minima of the objective function 4. To solve this nonlinear problem, we use the 
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Gauss-Newton method [S, 61. At iteration k with the estimate gk, we update our 
estimate of g* to 

where 

g k+l=gk+Agk, 

Agk= -[[f’]‘f’-’ [f’]‘[f-v,,], (3) 

and f’ is the total derivative of f with respect to g, evaluated at gk. When the 
iteration step produces changes in the estimate of g* that are smaller than some 
predetermined tolerance or correspondingly small changes in I$, we say the proce- 
dure has converged, and we stop. 

If we observe at least m linearly independent voltages, the Jacobian matrix, f’, 
will be of rank m. Then the approximate Hessian, [f’]’ f’, will be of full rank, and 
since it is quadratic in form, it will also be positive definite. The fact that this 
iterative procedure produces an approximation to g* is guaranteed by this positive 
definiteness. When we form v,, in the presence of additive zero-mean independent 
noise, the Gauss-Newton method is known as nonlinear least-squares estimation, 
which converges in distribution [7]. 

4. ILL-CONDITIONING 

We found [f’]’ f’ ill-conditioned. Our particular measurement scheme made the 
sensitivity to the conductivity farthest from the boundary much worse. To reduce 
measurement error, we use the four-electrode method [8]. We kept our current 
source leads on adjacent electrodes and similarly with our voltage measurement 
leads. An optimization for electrode-lead positions may result in better conditioning 
of [f]‘f’ [7,9]. 

To overcome the ill-conditioning we used the Marquardt method [lo]. The 
Marquardt method forms 

(A+ll,)z=b (4) 

for some scalar il, where A is the normalized matrix of [f’]= f’, b the normalized 
vector of [f’]’ (f -vO), and 1, is the m x m identity matrix. It solves for z and 
obtains its unnormalized form, Agk. Then decreases 1 by 10 if #k+l < 4” or con- 
tinuously increases it by 10 until #k+l <dk. When the distance between gk and g* 
is small, 1 is small, and (4) becomes (3). When the distance is large, 2 is large and 
(4) essentially turns the correction vector into the negative direction of the gradient 
of 4, decreasing the amount of correction made. For a small enough correction, this 
modified direction is guaranteed to decrease 4. Marquardt suggested starting with 
A = 0.01. The ill-conditioning was so large we started with ;1= 0.1. 
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5. STIFFNESS MATRIX ANALOGY 

In the next section, it will prove advantageous to develop the analogy between 
(2), and the representation of an electrical network. We now show that although 
not always physically realizable, the assembled FEM represents a general electrical 
network [ll, 123. If we generalize conductors, to be both positive and negative 
valued, then the constraints left on a network are that it satisfy reciprocity and 
Kirchoff’s laws. 

The (i, j)th entry in the stiffness matrix is calculated from 

y,=j-* aV~iV~jd2x, (5) 

where, for example, (pi is the basis function for node i. Since the basis functions are 
dimensionless, y, has the dimensions of siemens, the same as a network admittance 
matrix. Equation (5) easily shows that the stiffness matrix is symmetric, as is the 
network admittance matrix. This symmetry guarantees reciprocity. 

To satisfy Kirchoff’s laws, the admittance matrix must sum to zero along any 
column or row. To see that this holds for Y we use the fact that for (pi being 
Lagrange polynomials for all i, then 

everywhere in Q [13]. Therefore, for the ith row, 

xYe=C{ aVqiVqjd2x 
i i Q 

= 
s 7 

CTV cpiVpjd2x 
R 

= 0. 

By symmetry in (5) any jth column must also sum to zero. 

6. AN EFFICIENT WAY OF CALCULATING THE JACOBIAN MATRIX 

To calculate the Jacobian matrix, one needs to calculate &/ag, which from (2) 
is 

av= -y-l 
ay 

afi &- Y-‘c, 
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where, of course, we have used the constrained form of Y. We show here how to 
use the network compensation theorem to efficiently calculate the Jacobian matrix 
when using the fourelectrode method. Yorkey et al. [S] showed by example that 
for the four-electrode method the compensation theorem procedure is more efficient 
than directly implementing the above equation. Recently Isaacson [9] has 
proposed an I-electrode method, where current is applied to 1 electrodes. For this 
generalization it is more efficient to use the above equation directly to calculate the 
Jacobian matrix. 

Figure 1 shows the setup. Apply a current source to port k, ck, resulting in the 
voltage vi at port i. If the port j conductance, yjv changes to yj+ Ayj, [14, 151 
showed that the voltage change at port i is 

Avi = -ck Ay, zii’zkj, (6) 

where, for example, zij is the transfer impedance between ports i and j, and j’ 
denotes the new port formed by Ayj. If yj is the jth conductance defined in our 
FEM solution then we can use (6) to help form a Jacobian matrix entry. 

Section 7 will show that for a polynomial representation of O, the jth degree of 
freedom in this conductivity representation contributes to L conductor values 
Yj(l) . . . Yj(L) bY 

Yj(i) = aj(:i(l) + Sj(I) gj, 

where ~~~~~ is the contribution from other degrees of freedom, and sjCrj is a constant. 
The number of conductors effected by the jth degree of conductivity freedom, L, 
may be a function of j, but we prefer the simplier notation. Because of the 
importance of sjcr,, we call them the Jacobian constants for the degree of freedom 
index j. A change in gj alone leads to 

Portk. 

‘k 

Port j Port j’ 

FIG. 1. When we apply a current source to port k and an admittance yj changes to y, + dy, the com- 
pensation theorem shows us how to calculate the resulting change in voltage at port i by removing the 
current source and applying a particular current source to port j’. We can use this theorem to calculate 
the Jacobian matrix more etliciently. 

581/91/2-l 
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By repeated application of (6), the voltage change due to a conductance change in 
L ports is 

AU; = -ck $J AJ’j(/~Z~(~),zkj(/)~ 
/=I 

Therefore a change in the conductivity of one degree of freedom leads to 

Avi = -AgjCk i Sj(/)Zij(/)‘Zkj(/). 
I=1 

Dividing by Agj and letting Ag, + 0, we obtain 

au. L 
L- 

agj 
- -ck c Sj(i)zii(l)zkj(l). 

I=1 

Note we no longer need j’ because now zti = zii, If ck = c for all k, and using z = v/c, 
then 

which is the (i, j)th entry in the Jacobian matrix. 
To use (7), measure ukj(l) for the L branch voltages with current source at that 

port k which corresponds with the ith measurement. Then place the current source 
at that port corresponding to the ith measurement and measure viiCl), the L branch 
voltages again. Then multiply and sum these terms according to (7). 

7. CALCULATION OF THE JACOBIAN CONSTANTS 

We present here a method to calculate the constants needed in (7) to form the 
Jacobian matrix efficiently. The (i, j)th element in Y is defined as 

Y,=J u Vq, . Vqj d=x. 

Let us assume the 0 can be approximated by 

for some spatially dependent parameters p, and degrees of freedom fi. Then, 

Vqi.Vqj d’x=C gp Ja P~V~i*V~jd2x. 
B 

(8) 



ELECTRICAL IMPEDANCE TOMOGRAPHY 351 

Since g, is not a function of the integration, we can take the derivative of (8) with 
respect to a particular degree of freedom, gs, 

ay,- 

s ags- R 
pg Vi 4Gpj d2x. 

It is important to keep straight the fact that the value of the admittance that con- 
nects node i to node j is - yU. This subtlety comes about because the current is 
defined as positive inward. So we will define the Jacobian constants as the negative 
of the right-hand side of (9), 

ayii- 
aa - -s&/)9 

for some 1. 
Comparing (8) with (9), we can define the procedure for finding SB~,,. Assemble 

the stiffness matrix for gs equaling one for a particular b and zero elsewhere. Since 
Y is symmetric, the nonzero off-diagonal entries in either the lower or upper 
triangular segments of Y are the negative sic,) ‘s. The number of these entries is L. 
If, for a particular j?, we index the L admittance values that these nonzero entries 
correspond to by /?(I), then we can write 

or by integrating with respect to gg, 

This is the form Section 6 needed. 
Note that, since (9) is independent of the conductivity distribution, it need only 

be evaluated once in the reconstruction process. If instead we wished to take 
derivatives of an interpolated resistivity distribution, 

Then (9) would become 

which is a function of the resistivity distribution, and therefore would need evalua- 
tion at each iteration. If the distribution were piecewise constant, then (10) would 
simplify to 

ay,- 1 
ar,- -3 I R Pg VV i . VVj d2x, (11) 
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where pg acts as a window over which the integration is performed. In this case, we 
would obtain for (7) 

The integrand in (11) is independent of the resistivity distribution, and therefore 
need only be calculated once. 

8. IMPLEMENTATION 

In order to maintain a reasonable potential calculation, the FEM mesh must be 
dense where the voltage gradient is high. For implementation ease, we would like 
the conductivity degrees of freedom to correspond independently to each element in 
the mesh. However, we are limited to m degrees of freedom in our conductivity 
model, and oftentimes this number is not large enough to provide a reasonable 
mesh and also adequantely solve for the potential. To circumvent this problem 
define two meshes, one dense mesh for accurate calculation of the potentials, and 
one for the conductivity distribution. 

Although not necessary in the previous sections, it proves convenient to have the 
conductivity mesh a subgraph of the potential mesh. This method keeps C” con- 
tinuity of the conductivity distribution within each potential-mesh element, and 
therefore allows numerical integration to be exact without further subdivision. 

This subgraph goal sometimes becomes impossible to achieve near the boundary. 
If the isoparametric elements are of a lower order than the boundary itself then the 
coarse conductivity mesh will not interpolate the boundary as well as the fine 
potential mesh. Figure 2 shows an example for a piecewise linear interpolation to 
a curved boundary with (bi)linear elements. The extrapolation of the conductivity 
values outside of its course mesh is a reasonable approach since the amount of 
extrapolation is so small. 

9. RESULTS 

We present now two examples of polynomial conductivity elements, piecewise 
constant, and piecewise (bi)linear. We simulated a two-dimensional unit-radius 
inhomogeneous conductivity distribution. We used 16 electrodes equally spaced on 
the objects boundary. We were able to simulate n = 104 independent measurements. 
For the examples shown, the starting estimate was the average of the actual 
distribution. 

Figure 3 shows the potential mesh we used to model this system. The elements 
outside the circle are used to model the effects of the electrodes. We have found 
experimentally that this mesh is tine enough to obtain results within 10% of actual, 
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,- Boundary 

Potential mesh 

Conductivity mesh 

FIG. 2. When fitting a domain with lower order basis functions than the boundary, an exact 
subgraph cannot be defined. In this example the boundary is a sector from a circle. The potential mesh 
is piecewise (bi)hnear, using linear triangles at the boundary. The conductivity is a coarse corresponding 
to the big linear triangle. 

FIG. 3. The piecewise (bi)linear potential mesh modeling a circular domain. The elements outside 
the circle are given very high conductivity values to model the electrode effects. The electrode conduc- 
tivities are assumed known, and therefore not solved for in the inverse problem. There are 124 elements 
and 129 nodes within the mesh. The conductivity is detined on a subgraph of this mesh. 



Fm.4. The piecewise constant or (bi)linear conductivity mesh; except for 
subgraph of Fig. 3. This mesh has 89 elements and 94 nodes. 

the boundary a simple 

FIG 5. A smoothed image from a piecewise constant resistivity model using the mesh from Fig. 4. 
Resistivity increases with darkness. The maximal resistivity contrast was 3 : 1. The resistivity model had 
89 degrees of freedom. 

354 
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0.1 - 

0 10 20 30 40 50 60 70 80 90 
Time(s) 

FIG. 6. A cubic spline tit to the image error at each iteration verses CPU time on a VAX 11/785. 
One iteration equals approximately 11 s. 

which is good enough for the examples. Note that there are 124 elements and 129 
nodes within the circle, so we cannot use this mesh to define the conducitivity for 
either a piecewise constant or (bi)linear variation since n = 104. 

Figure 4 shows the conductivity mesh. Except for the boundary, this mesh is a 
trivial subgraph of Fig. 3. The conductivity mesh has 89 elements and 94 nodes, so 
we can use it for either a piecewise constant or (bi)linear representation. 

For our first example, we will use a piecewise constant resistivity representation. 
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FIG. 7. The image error when the anomaly in Fig. 5 is centered. Note the diffkulty in reconstruction. 



FIG. 8. The final images corresponding to: (a) Fig. 6; (b) Fig. 7. 



FIG. 9. A piecewise (bi)linear conductivity distribution with 94 degrees of freedom. Now conductivity 
increases with darkness. The maximal conductivity contrast was 3 : 1. This smooth image is not artificial 
as it is in Figs. 5 and 8. 

'0 '0 20 I  20 I 40 I  40 I 60 1 60 1 80 I  80 I 100 I 100 I 120 120 140 1 140 1 160 160 180 1 180 1 200 200 
Time(s) Time(s) 

FIG. 10. The image error in reconstructing Fig. 9. The increase in the degrees of freedom and the 
order in the conductivity basis have increased the reconstruction time from 11 s per iteration to 22 s. 
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We choose to model resistivity because of its standard use in geophysics and 
medicine. Figure 5 shows a smoothed representation of a computer-simulated 
resistivity distribution, which had a maximal contrast ratio of 3 : 1. We assume that 
from the boundary measurements at least an estimate of the average resistivity 
value can be found, so we use the average resistivity value for an initial 
homogeneous guess. To estimate the accuracy of the reconstruction we define the 
error measure at any iteration step as the L, norm of the difference between the 
true distribution and the estimated one at that iteration divided by the L, norm of 
this difference with the initial guess, quantity squared. 

Figure 6 shows this error versus reconstruction time on a VAX 11/785. The error 
was interpolated by a cubic spline in between iteration steps. Each iteration took 
approximately 11 s of computer time. So in only a few iterations the image error 
was very small. Although for this example we were able to recover the original 
anomaly to any degree of accuracy, it is not always possible to iterate to such 
a small error. By simply moving the anomaly to the center where there is less 
sensitivity to its presence, we obtain the error curve Fig. 7 shows. The lack of 

FIG. 11. The final image corresponding to Fig. 10. 
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sensitivity to even this large anomaly caused the reconstructed image to overshoot 
the true resistivity. Figure 8 shows the final reconstruction for both these cases. 

Our second example is a piecewise (bi)linear representation. Figure 9 shows a 
piecewise (bi)linear interpolation of a conductivity 

a(x, y)= 1+2exp 
[ 

(x - x(J2 + y2 - 
2 

r0 1 
for x0 = 0.5 and r. = ,/6%. Now the smooth image is not artificial. This distribu- 
tion gives also gives a maximal contrast of 3 : 1. Figure 10 shows the error curve, 
where the time per each iteration has almost doubled. This time result is 
predominantly caused by the fact that the number of degrees of freedom in the con- 
ductivity mesh increased from 89 to 94. Since the calculation of (3) is O(m3), this 
increase in freedom results in a tremendous increase in computing time. Figure 10 
shows that although the final image-error converged to some small value, the error 
did not become negligible small. Figure 11 shows the final image. 

10. CONCLUSIONS 

With EIT we have only a finite amount of boundary information, which limits 
the degrees of freedom used to represent a conductivity distribution. With this 
limitation we wish to reconstruct a model as close to a realistic approximation as 
possible. Often times a piecewise constant conductivity representation may not have 
enough variation. We can artificially smooth the distribution before display, but a 
better treatment is to model the conductivity with a higher order basis in the 
reconstruction, as has been shown. 

With the method outlined here, a continuous conductivity distribution can be 
adequately modeled and computed with any order basis desired. If we describe 
the potential and conductivity distributions by Lagrange polynomials, then the 
derivatives needed of the estimated voltages are easy to calculate. When we use a 
(bi)linear or higher order of basis for the conductivity, we can reduce the com- 
plexity of these calculations by interpolating conductivity values rather than 
resistivities. These numerical implementation techniques result in saving time in 
both algorithm development and execution of the code. 

Results like those of Figs. 7 and 10 have led us to believe that although the 
Gauss-Newton method quickly iterates to an estimate of g*, this minima may only 
be a local one. Since this work involved computer simulations with double preci- 
sion arithmetic, our noise level was low. Our boundary measurements formed a 
linear basis set for any other boundary measurements. So the measurements had all 
the information in them that any other measurement scheme would have. It is for 
these reasons that we believe our inability to converge to a neglible error was due 
to suboptimal conductivity meshes. Perhaps the mesh should become less dense 
farther from the boundary. More thorough analysis of the reconstruction problem 
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for a given conductivity basis function may show how to better design a reconstruc- 
tion mesh to minimize the effects of local minima. 

With real data there will be appreciable noise levels. Then there will be some 
measurements schemes that provide more information than others. These noise 
effects should be diminished by more optimal probing techniques [9]. It is not hard 
to believe that ones ability to distinguish two different conductivity distributions 
can improve if current is applied an more than just two electrodes. 
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